Itin tikslus, vandenilio molekulių ritmu tiksintis laikrodis galėtų padėti tirti fundamentalias konstantas, ieškant naujos fizikos požymių.
Itin tikslus, vandenilio molekulių ritmu tiksintis laikrodis galėtų padėti tirti fundamentalias konstantas, ieškant naujos fizikos požymių.
Atominiai laikrodžiai yra patys tiksliausi laikrodžiai pasaulyje. Jie matuoja radiacijos dažnį, kuris priverčia atomo elektronus peršokti iš vieno energijos lygmens į kitą. Toks procesas tam tikram elementui nekinta, todėl radiacijos periodu galima apibrėžti sekundę.
Laikrodžiai ne tik palaiko laiko ritmą. Jie turi daugybę pritaikymų, nuo kvantinių sistemų stimuliavimo iki gravitacijos matavimo. Tačiau kai kurių paslapčių įminimui reikalingas tikslumas pasiekia dabartinių laikrodžių tikslumo ribas.
Viename eksperimente atominiais laikrodžiais bandoma nustatyti protonų ir elektronų masių santykį. Atrodo, kad santykis pastovus, tačiau plečiantis visatai jis gali labai palengva keistis. Net ir mažo santykio poslinkio aptikimas gali pasakyti mums ar ši fundamentali konstanta praeityje turėjo skirtingas reikšmes. Tai gali būti suteikti pirmųjų kosmoso egzistavimo akimirkų užuominų.
Stephanas Schilleris iš Düsseldorfo universiteto Vokietijoje kartu su kolegomis mano, kad naudojantis molekulių, o ne atomų laikrodžiu, šią idėją galima patikrinti geriau. Remiantis komandos skaičiavimais, laikrodis su 2 vandenilio atomais jo centre galėtų suderinti kelis skirtingus dažnius vienu metu, todėl būtų tiksliau tiriami galimi protono ir elektrono masių santykio pasikeitimai.
O dėl to, kad vandenilio molekulės sudaro vos saujelę dalelių lyginant su didesniais cezio atomais, naudojant juos atominiame laikrodyje, turėtų būti daug lengviau atlikti teorinius skaičiavimus ir palyginti juos su realiais eksperimentais, sako komanda.
Wim Ubachs iš VU universiteto Amsterdame Nyderlanduose sutinka, kad molekuliniai laikrodžiai gali būti naudojami kaip didelio tikslumo fizikos priemonės. Tačiau jo nuomone vis dar reikia įveikti tokias technines kliūtis kaip skirtingų lazerių tobulinimas, kad šie vibruotų molekules skirtingais dažniais tuo pačiu metu.